Characterizing Nonlinear Heartbeat Dynamics Within a Point Process Framework Citation

نویسنده

  • Zhe Chen
چکیده

Human heartbeat intervals are known to have nonlinear and nonstationary dynamics. In this paper, we propose a model of R–R interval dynamics based on a nonlinear Volterra– Wiener expansion within a point process framework. Inclusion of second-order nonlinearities into the heartbeat model allows us to estimate instantaneous heart rate (HR) and heart rate variability (HRV) indexes, as well as the dynamic bispectrum characterizing higher order statistics of the nonstationary non-Gaussian time series. The proposed point process probability heartbeat interval model was tested with synthetic simulations and two experimental heartbeat interval datasets. Results show that our model is useful in characterizing and tracking the inherent nonlinearity of heartbeat dynamics. As a feature, the fine temporal resolution allows us to compute instantaneous nonlinearity indexes, thus sidestepping the uneven spacing problem. In comparison to other nonlinear modeling approaches, the point process probability model is useful in revealing nonlinear heartbeat dynamics at a fine timescale and with only short duration recordings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A differential autoregressive modeling approach within a point process framework for non-stationary heartbeat intervals analysis Citation

Modeling heartbeat variability remains a challenging signal-processing goal in the presence of highly non-stationary cardiovascular control dynamics. We propose a novel differential autoregressive modeling approach within a point process probability framework for analyzing R-R interval and blood pressure variations. We apply the proposed model to both synthetic and experimental heartbeat interv...

متن کامل

A Unified Point Process Framework for Assessing Heartbeat Dynamics and Cardiovascular Control Citation

We present a unified probabilistic point process framework to estimate and monitor the instantaneous heartbeat dynamics as related to specific cardiovascular control mechanisms and hemodynamics. Assessment of the model's statistics is established through the Wiener-Volterra theory and a multivariate autoregressive (AR) structure. A variety of instantaneous cardiovascular metrics, such as heart ...

متن کامل

Nonlinear digital signal processing in mental health: characterization of major depression using instantaneous entropy measures of heartbeat dynamics

Nonlinear digital signal processing methods that address system complexity have provided useful computational tools for helping in the diagnosis and treatment of a wide range of pathologies. More specifically, nonlinear measures have been successful in characterizing patients with mental disorders such as Major Depression (MD). In this study, we propose the use of instantaneous measures of entr...

متن کامل

Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting f...

متن کامل

A Unified Point Process Probabilistic Framework to Assess Heartbeat Dynamics and Autonomic Cardiovascular Control

In recent years, time-varying inhomogeneous point process models have been introduced for assessment of instantaneous heartbeat dynamics as well as specific cardiovascular control mechanisms and hemodynamics. Assessment of the model's statistics is established through the Wiener-Volterra theory and a multivariate autoregressive (AR) structure. A variety of instantaneous cardiovascular metrics, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010